Home
Class 12
MATHS
If f(x)=int(2)^(x)(dt)/(1+t^(4)), then...

If `f(x)=int_(2)^(x)(dt)/(1+t^(4))`, then

A

`f(3)lt(1)/(17)`

B

`f(3)gt(1)/(17)`

C

`f(3)=(1)/(17)`

D

`f(3)gt1`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)=int_(2)^(x)(dt)/(1+t^(4)).`
`rArr" "f'(x)=(1)/(1+x^(4))`
In [2,3], apply mean value theorem to f(x)
`therefore" "(f(3)-f(2))/(3-2)=f'(x),` where `c in (2,3)`
`therefore" "f(3)-0=(1)/(1+c^(4))`
Now 2 lt c lt 3
`17 lt 1+c^(4)lt84`
`rArr" "(1)/(17)gt(1)/(1+c^(4))gt(1)/(82)`
`rArr" "(1)/(82)ltf(3)lt(1)/(17)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

If f(x)=int_(0)^(x)(dt)/((f(t))^(2)) and int_(0)^(2)(dt)/((f(t))^(2))=(6)^((1)/(3)) then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_(x)^(x+1) (e^-(t^2)) dt, then the interval in which f(x) is decreasing is