Home
Class 12
MATHS
If int(0)^(x)f(x)sint dt=" constant, " 0...

If `int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2`, then the value of `f(pi//2)` is

A

3

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(0)^(x)f(x) sin t dt = "constant"`
Differentiate both side w.r.t. x
`f'(x)(1-cosx)+f(x) sin x = 0`
`rArr" "int(f'(x))/(f(x))dx=int(sinx)/(cosx-1)dx`
`rArr" "ln|f(x)|=-2 ln sin.(x)/(2)+lnc`
`rArr" "f(x)=(c)/((sin.(x)/(2))^(2))`
`f(pi)=2rArrc=2`
`rArr" "f((pi)/(2))=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Let R to R be a differentiable functions such that its derivative f' is continuous and f(pi) = - 6 . If F : [0,pi] to R is defined by F(x) int_(0)^(x) f(t) dt , and int_(0)^(x) f(t) dt and if int_(0)^(pi) (f'(x) +F(x))cos xdx = 2 then the value of f(0) is _________

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If f:[0,pi]rarr R is continuous and int_(0)^( pi)f(x)sin xdx=int_(0)^( pi)f(x)cos xdx=0 then the number of roots of f(x) in (0,pi) is ...

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx then the value of A is ( sqrt2 = 1.41)