Home
Class 12
MATHS
lim(xrarr0) (int(0)^(x)(t^(2))/(sqrt(a+t...

`lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0)`. Then the value of a is

A

`1//2`

B

`1//4`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Identify the limit and the form We need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} \, dt}{x - \sin x} \] When we substitute \(x = 0\), both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). **Hint:** Check if the limit results in an indeterminate form to decide if L'Hôpital's Rule is applicable. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we apply L'Hôpital's Rule, which states that if \(\lim_{x \to c} f(x) = 0\) and \(\lim_{x \to c} g(x) = 0\), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] We need to differentiate the numerator and denominator. **Hint:** Differentiate the numerator and denominator separately. ### Step 3: Differentiate the numerator Using the Fundamental Theorem of Calculus, the derivative of the numerator is: \[ \frac{d}{dx} \left( \int_0^x \frac{t^2}{\sqrt{a+t}} \, dt \right) = \frac{x^2}{\sqrt{a+x}} \] **Hint:** Remember to use the Fundamental Theorem of Calculus for differentiating integrals. ### Step 4: Differentiate the denominator The derivative of the denominator \(x - \sin x\) is: \[ \frac{d}{dx}(x - \sin x) = 1 - \cos x \] **Hint:** Use basic differentiation rules for trigonometric functions. ### Step 5: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{\frac{x^2}{\sqrt{a+x}}}{1 - \cos x} \] Again, substituting \(x = 0\) gives us \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. **Hint:** If you still have an indeterminate form, apply L'Hôpital's Rule again. ### Step 6: Differentiate again Differentiate the numerator: \[ \frac{d}{dx} \left( \frac{x^2}{\sqrt{a+x}} \right) = \frac{2x\sqrt{a+x} - \frac{x^2}{2\sqrt{a+x}}}{a+x} = \frac{2x(a+x) - \frac{x^2}{2}}{(a+x)\sqrt{a+x}} \] And differentiate the denominator: \[ \frac{d}{dx}(1 - \cos x) = \sin x \] ### Step 7: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{\frac{2x(a+x) - \frac{x^2}{2}}{(a+x)\sqrt{a+x}}}{\sin x} \] ### Step 8: Substitute \(x = 0\) Substituting \(x = 0\) gives: \[ \frac{0}{0} \text{ (still indeterminate)} \] We can simplify the expression further or apply L'Hôpital's Rule again. ### Step 9: Evaluate the limit After simplification and substituting \(x = 0\), we find: \[ \lim_{x \to 0} \frac{2\sqrt{a}}{a} = \frac{2}{\sqrt{a}} \] Setting this equal to 1 (as given in the problem): \[ \frac{2}{\sqrt{a}} = 1 \implies \sqrt{a} = 2 \implies a = 4 \] ### Conclusion The value of \(a\) is: \[ \boxed{4} \]

To solve the limit problem given in the question, we will follow these steps: ### Step 1: Identify the limit and the form We need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} \, dt}{x - \sin x} \] When we substitute \(x = 0\), both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

lim_(xrarr0) (sinx)/(x)= ?

If lim_(xrarr0)(int_(0)^(x^2)(cos^2t)dt)/(xsinx)

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

Let L_(1) = lim_(xrarr0^(+)) (int_(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx) , then identify the correct option(s).

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0)(cos (sinx)-1)/(x^2)=

lim_(x rarr0)(int_(0)^(1)sin t^(2)dt)/(x(1-cos x)) equals