Home
Class 12
MATHS
Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then...

Let `f(x)=int_(2)^(x)f(t^(2)-3t+4)dt`. Then

A

f(2) = 0

B

`f(-2)=0`

C

`f'(2)=0`

D

`f'(2)=2`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`f(2)=0`
Also, `f'(x)=f(x^(2)-3x+4)`
`f'(2)=f(2)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let: f(x)=int_(0)^(x)|2t-3|dt. Then discuss continuity and differentiability of f(x) at x=(3)/(2)

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then