Home
Class 12
MATHS
If int(0)^(x)f(t)dt=e^(x)-ae^(2x)int(0)^...

If `int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt`, then

A

`a=(1)/(3-2e)`

B

`f(x)=e^(x)-2e^(2x)`

C

`a=(1)/(e)`

D

`f(x)=e^(x)-e^(-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation \[ \int_{0}^{x} f(t) dt = e^{x} - a e^{2x} \int_{0}^{1} f(t) e^{-t} dt, \] we can follow these steps: ### Step 1: Differentiate both sides with respect to \(x\) We start by differentiating both sides of the equation with respect to \(x\). Using the Fundamental Theorem of Calculus on the left side, we have: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) dt \right) = f(x). \] For the right side, we differentiate: \[ \frac{d}{dx} \left( e^{x} - a e^{2x} \int_{0}^{1} f(t) e^{-t} dt \right) = e^{x} - 2a e^{2x} \int_{0}^{1} f(t) e^{-t} dt. \] Thus, we have: \[ f(x) = e^{x} - 2a e^{2x} \int_{0}^{1} f(t) e^{-t} dt. \] ### Step 2: Rearranging the equation Now, we can rearrange the equation to isolate \(f(x)\): \[ f(x) = e^{x} - 2a e^{2x} C, \] where \(C = \int_{0}^{1} f(t) e^{-t} dt\). ### Step 3: Substitute \(f(x)\) back into the integral Next, we substitute \(f(x)\) back into the original integral to find \(C\): \[ C = \int_{0}^{1} \left( e^{t} - 2a e^{2t} C \right) e^{-t} dt. \] This simplifies to: \[ C = \int_{0}^{1} e^{t} e^{-t} dt - 2a C \int_{0}^{1} e^{2t} e^{-t} dt. \] ### Step 4: Calculate the integrals Now we calculate the integrals: 1. \(\int_{0}^{1} e^{t} e^{-t} dt = \int_{0}^{1} 1 dt = 1\). 2. \(\int_{0}^{1} e^{2t} e^{-t} dt = \int_{0}^{1} e^{t} dt = [e^{t}]_{0}^{1} = e - 1\). Substituting these results into the equation for \(C\): \[ C = 1 - 2a C (e - 1). \] ### Step 5: Solve for \(C\) Rearranging gives: \[ C + 2a C (e - 1) = 1, \] which can be factored as: \[ C(1 + 2a(e - 1)) = 1. \] Thus, we find: \[ C = \frac{1}{1 + 2a(e - 1)}. \] ### Step 6: Substitute \(C\) back to find \(f(x)\) Now, substituting \(C\) back into our expression for \(f(x)\): \[ f(x) = e^{x} - 2a e^{2x} \cdot \frac{1}{1 + 2a(e - 1)}. \] ### Final Expression for \(f(x)\) Thus, the final expression for \(f(x)\) is: \[ f(x) = e^{x} - \frac{2a e^{2x}}{1 + 2a(e - 1)}. \]

To solve the given equation \[ \int_{0}^{x} f(t) dt = e^{x} - a e^{2x} \int_{0}^{1} f(t) e^{-t} dt, \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

If f(x)=int_(0)^(x)tf(t)dt+2, then

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

Let f(x)=int_(0)^(1)|x-t|dt, then

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is