Home
Class 12
MATHS
A function f(x) satisfies f(x)=sinx+int0...

A function `f(x)` satisfies `f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt` is

A

`f((pi)/(6))=1`

B

`g(x)=int_(0)^(x)f(t)` dt is increasing on `(0,pi)`

C

`f(0)=0`

D

f(x) is increasing on `(0,pi)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`f(x)=sin x +int_(0)^(x)f'(t)(2 sin t - sin^(2)t)dt`
`rArr" "f'(x)=cos x+f'(x)(2 sin x-sin^(2)x)`
`rArr" "(1-2 sin x+sin^(2)x)f'(x)=cosx`
`rArr" "f'(x)=(cosx)/((sin x-1)^(2))`
`rArr" "f(x)=(1)/((1-sinx))+c`
since f(0)= 0 we have `c=-1`
`rArr" "f(x)=(sinx)/(1-sinx)`
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

A differentiable function satisfies f(x)=int_(0)^(x){f(t)cost-cos(t-x)}dt. Which is of the following hold good?

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

If a function y=f(x) such that f'(x) is continuous function and satisfies (f(x))^(2)=k+int_(0)^(x) [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) , then

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a derivable function satisfying f(x)=int_(0)^(x)e^(t)sin(x-t)dt and g(x)=f'(x)-f(x) Then the possible integers in the range of g(x) is

Let f be a continuous function on (0,oo) and satisfying f(x)=(log_(e)x)^(2)-int_(1)^(e)(f(t))/(t)dt for all x>=1, then f(e) equals