Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2)(sinx+cosx)^(n)dx...

Let `I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2)`. Then the value of n. `I_(n)-2(n-1)I_(n-1)`is

A

5

B

9

C

2

D

7

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n-1)(sinx+cosx)dx`
`" "=[(sinx+cosx)^(n-1)(sinx-cosx)]_(0)^(pi//2)`
`" "+int_(0)^(pi//2)(sinx+cosx)^(n-2)(cosx-sinx)^(2)dx`
`n.I_(n)=2+2(n-1)I_(n-2)rArrn.I_(n)-0 2(n-1)I_(n-2)=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is