Home
Class 12
MATHS
If int0^ooe^(-ax)dx=1/a, then int0^oo(x^...

If `int_0^ooe^(-ax)dx=1/a`, then `int_0^oo(x^n)e^(-ax)dx` is

A

`((-1)^(n)n!)/(a^(n+1))`

B

`((-1)^(n)(n-1)!)/(a^(n))`

C

`(n!)/(a^(n+1))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(n)=int_(0)^(oo)x^(n)e^(-ax)dx`
`=[x^(n).(e^(-ax))/(-a)]_(0)^(oo)-int_(0)^(oo)nx^(n-1).(e^(-ax))/(-a)dx`
`=-(1)/(a)underset(xrarroo)(lim)(x^(n))/(e^(ax))+(n)/(a)I_(n-1)`
`I_(n)=(n)/(a)I_(n-1)" "[because underset(xrarroo)(lim)(x^(n))/(e^(ax))=0]`
`=(n)/(a).(n-1)/(a)I_(n-2)`
`=(n(n-1)(n-2))/(a^(3))I_(n-3)`
`=(n!)/(a^(n))int_(0)^(oo)e^(-ax)dx=(n!)/(a^(n))I_(0)=(n!)/(a^(n+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: If int_0^oo e^(-ax)dx=1/a , then int_0^oo x^me^(-ax)dx=(lfloorm)/a^(m+1) ,Statement-2: d^n/dx^n(e^(kx))=k^n e^(kx) and d^n/dx^n(1/x)=((-1)^nlfloorn)/x^(n+1) (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

int_0^5e^(-2x)dx

underset is If int_(0)^(oo)e^(-ax)dx=(1)/(a), then int_(0)^(oo)(x^(n))e^(-ax)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int x^(2)e^(ax)dx

D) int_(0)^(oo)x^(5)e^(-x)dx