Home
Class 12
MATHS
Let f be a continuous function satisfyin...

Let f be a continuous function satisfying `f '(I n x)=[1` for `0< x<= 1, x` for `x > 1` and `f (0) = 0` then `f(x)` can be defined as

A

`f(x)={{:(1,if,xle1),(1-e^(x),if,xgt1):}`

B

`f(x)={{:(1,if,xle1),(e^(x)-1,if,xgt1):}`

C

`f(x)={{:(1,if,xlt1),(e^(x),if,xgt1):}`

D

`f(x)={{:(1,if,xle1),(e^(x)-1,if,xgt1):}`

Text Solution

Verified by Experts

The correct Answer is:
D

`f'(lnx)={{:(1,"for", 0ltxle1),(x,"for",xgt1):}`
Put log x = t
`rArr" "x=e^(t)`
For `x gt 1,f'(t)=e^(t),t gt0`
integrating `f(t)=e^(t)+C,`
`f(0)=e^(0)+c`
`rArr" "c=-1" (given f(0) = 0)"`
`therefore" "f(t)=e^(t)-1" for "tgt0" (corresponding to x gt 1)"`
Hence `f(x)=e^(x)-1" for "x gt 0" (1)"`
again for `0lt x le 1`
`f'(logx) = 1" "(x=e^(t))`
`f'(t)=1" for "t le0`
`f(t)=t+C`
`f(0)=0+C`
`rArr" C=0`
`rArr" "f(t)=t " for "t lt0`
`rArr" "f(x)=x" for "x le0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a continuous function satisfying f'(In x)=[1 for 0 1 and f(0)=0 then f(x) can be defined as

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) for all x, y in R and f(0) = 0 , then for any n in N , f(n) =

Let f(x) be the continuous function such that f(x)= (1-e^(x))/(x) for x!=0 then

Let f:[0,1]rarr[0,1] be a continuous function such that f(f(x))=1f or allx in[0,1] then

Let f(x) be a continuous function on [0,4] satisfying f(x)f(4-x)=1. The value of the definite integral int_(0)^(4)(1)/(1+f(x))dx equals -

Let f(x) be a continuous function such that f(0)=1 and f(x)=f((x)/(7))=(x)/(7)AA x in R then f(42) is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to