Home
Class 12
MATHS
If g(x) is the inverse of f(x) and f(x...

If `g(x)` is the inverse of `f(x) and f(x)` has domain `x in [1,5]`, where `f(1)=2 and f(5) = 10` then the values of `int_1^5 f(x)dx+int_2^10 g(y) dy` equals

A

72

B

56

C

36

D

48

Text Solution

Verified by Experts

The correct Answer is:
D

`y=f(x)`
`rArr" "x=f^(-1)(y)=g(y)`
`" "dy=f'(x)dx`
where y is 2 then x = 1 and y is 10 then x = 5
`therefore" "I=int_(1)^(5)f(x)dx+int_(2)^(10)g(y)dy`
`" "=int_(1)^(5)f(x)dx+int_(1)^(5)xf'(x)dx`
`therefore" "I=int_(1)^(5)(f(x)+xf'(x))dx`
`" "=xf(x)|_(1)^(5)=5f(5)-f(1)=5.10-2=28`
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) is the inverse of f(x) and f(x) has domain x in[2,7] where f(2)=3 and f(7)= 13 , then the value of (1)/(17)(int_(2)^(7)f(x)dx+int_(3)^(13)g(y)dy) is equal to

f(x)={[1-|x|,|x| 1' find the value of int_(-3)^(5)g(x)dx

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to