Home
Class 12
MATHS
If fx=x+sinx, then int(pi)^(2pi)f^(-1)(x...

If `fx=x+sinx`, then `int_(pi)^(2pi)f^(-1)(x)dx` is equal to

A

`(3pi^(2))/(2)-2`

B

`(3pi^(2))/(2)+2`

C

`3pi^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Putting `x=f(t) rArr dx=f'(t)dt`
`I=int_(pi)^(2pi)t.f'(t)dt" "(becausef(pi)=pi andf(2pi)=2pi)`
`=|t.f(t)|_(pi)^(2pi)-int_(pi)^(2pi)1.f(t)dt`
`=2pif(2pi)-pif(pi)-|(t^(2))/(2)-cost|_(pi)^(2pi)`
`=4pi^(2)-pi^(2)-(1)/(2)(4pi^(2)-pi^(2))+(cos 2pi- cospi)=(3pi^(2))/(2)+2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin x-x, then int_(-2 pi)^(2 pi)|f^(-1)(x)|dx= (A) pi^(2)(B)2 pi^(2)(C)3 pi^(2)(D)4 pi^(2)

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

int_(-pi/2)^( pi/2)sin|x||dx is equal to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

f(x)=Minimum{tan x,cot x}AA x in(0,(pi)/(2)) Then int_(0)^((pi)/(3))f(x)dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to