Home
Class 12
MATHS
Let m,n be two positive real numbers and...

Let m,n be two positive real numbers and define `f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx` and `g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx`.
It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0.
`int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=`

A

`(f(n+1))/((m+1)^(n))`

B

`(f(n))/((m+1)^(n+1))`

C

`(f(n+1))/((m+1)^(n+1))`

D

`g(m+1),n+1)`

Text Solution

Verified by Experts

The correct Answer is:
C

Putting `log_(e)..(1)/(x)=t`
`rArr" "x=e^(-t)`
`rArr" "int_(0)^(1)x^(m)(log_(e)(1)/(x))^(n)dx`
`" "=int_(oo)^(0)e^(-mt)t^(n)(-e^(t))dt`
`" "=int_(0)^(oo)t^(n)e^(-(m+1))dt`
`" "=(1)/((m+1)^(n+1))int_(0)^(oo)t^(n)e^(-y)dy" (putting (m + 1) t = y)"`
`" "=(f(n+1))/((m+1)^(n+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N