Home
Class 12
MATHS
((dy)/(dx))^(2) + 2y cot x (dy)/(dx) = y...

`((dy)/(dx))^(2) + 2y cot x (dy)/(dx) = y^(2)` has the solution

A

`y + (c)/(1+cos x) = 0`

B

`y = (c)/(1-cos x)`

C

`x = 2 sin^(-1) sqrt((c)/(2y))`

D

`x = 2 cos^(-1) ((c)/(2y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \left(\frac{dy}{dx}\right)^2 + 2y \cot x \frac{dy}{dx} = y^2, \] we will follow these steps: ### Step 1: Substitute \( t = \frac{dy}{dx} \) Rewriting the equation in terms of \( t \): \[ t^2 + 2y \cot x \cdot t - y^2 = 0. \] ### Step 2: Rearranging the equation This is a quadratic equation in \( t \). We can rearrange it as: \[ t^2 + 2y \cot x \cdot t - y^2 = 0. \] ### Step 3: Apply the quadratic formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = 2y \cot x \), and \( c = -y^2 \). Thus, \[ t = \frac{-2y \cot x \pm \sqrt{(2y \cot x)^2 - 4(1)(-y^2)}}{2(1)}. \] ### Step 4: Simplifying the expression Calculating the discriminant: \[ (2y \cot x)^2 + 4y^2 = 4y^2 \cot^2 x + 4y^2 = 4y^2 (\cot^2 x + 1). \] Since \( \cot^2 x + 1 = \csc^2 x \): \[ t = \frac{-2y \cot x \pm 2y \sqrt{\csc^2 x}}{2} = -y \cot x \pm y. \] ### Step 5: Expressing \( \frac{dy}{dx} \) Thus, we have: \[ \frac{dy}{dx} = -y \cot x + y \quad \text{or} \quad \frac{dy}{dx} = -y \cot x - y. \] ### Step 6: Separating variables For the first case: \[ \frac{dy}{dx} = y(1 - \cot x). \] This can be rewritten as: \[ \frac{dy}{y} = (1 - \cot x) dx. \] ### Step 7: Integrating both sides Integrating both sides: \[ \int \frac{dy}{y} = \int (1 - \cot x) dx. \] The left side gives: \[ \ln |y| = \int (1 - \cot x) dx. \] ### Step 8: Solving the integral on the right The integral of \( 1 \) is \( x \) and the integral of \( -\cot x \) is \( -\ln |\sin x| \): \[ \ln |y| = x - \ln |\sin x| + C. \] ### Step 9: Exponentiating both sides Exponentiating both sides gives: \[ y = e^{C} \cdot \frac{e^x}{|\sin x|}. \] Let \( e^{C} = C' \) (a constant), we have: \[ y = \frac{C' e^x}{|\sin x|}. \] ### Step 10: General solution Thus, the general solution of the differential equation is: \[ y = \frac{C e^x}{\sin x}, \] where \( C \) is a constant. ---

To solve the differential equation \[ \left(\frac{dy}{dx}\right)^2 + 2y \cot x \frac{dy}{dx} = y^2, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Comprehension Type|2 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Solved Examples And Exercises|241 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) + y cot x = sin 2x

The solution of ((dy)/(dx))^(2) + (2x + y) (dy)/(dx) + 2xy = 0 , is

y+x^2="dy"/"dx" has the solution

The differential equation (dy)/(dx)+(y^(2))/(x^(2))=(y)/(x) has the solution

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

If (dy)/(dx)= y sin 2x, y(0)=1 , then solution is

y^(2)-x^(2) (dy)/(dx) = xy(dy)/(dx)

The first integral of (dy)/(dx)((d^(2)y)/(dx^(2)))-x^(2)y((dy)/(dx))=xy^(2) will be

y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))is