Home
Class 12
CHEMISTRY
The solubility of BaSO(4) in water is 2....

The solubility of `BaSO_(4)` in water is `2.42xx10^(-3) gL^(-1)` at `298 K`. The value of its solubility product `(K_(sp))` will be (Given molar mass of `BaSO_(4)=233 g mol^(-1)`)

A

`1.08xx10^(-14) "mol"^(2)L^(-2)`

B

`1.08xx10^(-12) "mol"^(2)L^(-2)`

C

`1.08 xx 10^(-10) "mol"^(2)L^(-2)`

D

`1.08 xx 10^(-8) "mol"^(2) L^(-2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Solubility of `BaSO_(4), s=(2.42xx10^(-3))/(233) ("mol" L^(-1))`
`=1.04xx10^(-5) ("mol" L^(-1))`
`BaSO_(4)(s) hArr underset(s)(Ba^(2))(aq) + underset(s)(SO_(4)^(2-))(aq)`
`K_(sp)=[Ba^(2+)][SO_(4)^(2-)]=s^(2)`
`=(1.04xx 10^(-5))^(2)`
`=1.08xx10^(-10) "mol"^(2)L^(-2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-5) mol/letre at 298K. What will be its solubility product ?

The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-8) mol/litre at 298 K. What will be its solubility product:

The solubility of BaSO_(4) in water is 2.33xx10^(-3) g//litre . Its solubility product will be (molecular weight of BaSO_(4)=233 )

Solubility of CaF_(2) is 0.5xx10^(-4)" mol L"^(-1) . The value of K_(sp) for the salt is