Home
Class 11
MATHS
Prove that sum(r=1)^n(1/(costheta+"cos"...

Prove that `sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),(w h e r e n in N)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),( "where" , n in N)dot

Prove that sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))=(sin n theta)/(2sin theta*cos theta*cos(n+1)theta),(wherenin N)

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove: (sintheta)/(1-costheta)=cos e c\ theta+cottheta

If : (sintheta+costheta)(1-sintheta*costheta)=sin^(n)theta+cos^(n)theta,"then" : n =

costheta+cos2theta+cos3theta+.......+cos(n-1)theta+cosntheta=

Prove that sqrt((1+costheta)/(1-costheta))+sqrt((1-cos theta)/(1+cos theta))=2 " cosec"theta.

Prove that (1+costheta+sintheta)/(1-costheta+sintheta)=cot(theta/2)

Prove that: (2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1) ...(2cos2^(n-1)theta-1)