Home
Class 11
MATHS
Evaluate (lim)(x->0)f(x) , where f(x...

Evaluate `(lim)_(x->0)f(x)` , where `f(x)" "=[(|x|)/x, x!= 0,0,x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 , 0,\ x=0

Evaluate (lim_(x rarr0)f(x), where f(x)=[(|x|)/(x),x!=0,0,x=0

Evaluate (lim)_(x rarr0)f(x), where f(x)={(|x|)/(x),x!=00,x=0

Evaluate lim_(xto0)f(x) , where f(x)={{:((|x|)/(x)","xne0),(0","x=0):}

Find (lim)_(x rarr0)f(x), where f(x)=[[(x)/(|x|),x!=00,x=0]]

Evaluate lim_(x rarr 0)f(x) , where f(x)= {(|x|/x,x ne 0),(0,x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}