Home
Class 12
CHEMISTRY
In the Rutherford scattering experiment ...

In the Rutherford scattering experiment the number of `alpha`particles scattered at anangle `theta = 60^(@)` is 12 per min. The number of `alpha` particles per minute when scatterd at an angle of`90^(@)` are

A

160

B

10

C

6

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the Rutherford scattering experiment, we will follow these steps: ### Step-by-Step Solution: 1. **Understanding the Relationship**: The number of alpha particles scattered at an angle θ is directly proportional to \( \frac{1}{\sin^4(\frac{\theta}{2})} \). Thus, we can express this relationship mathematically as: \[ n \propto \frac{1}{\sin^4(\frac{\theta}{2})} \] where \( n \) is the number of alpha particles scattered. 2. **Setting Up the Equation**: We introduce a constant \( k \) to remove the proportionality: \[ n = \frac{k}{\sin^4(\frac{\theta}{2})} \] 3. **Finding the Constant \( k \)**: We know that when \( \theta = 60^\circ \), the number of alpha particles \( n = 12 \) per minute. We can substitute these values into the equation: \[ 12 = \frac{k}{\sin^4(30^\circ)} \] Since \( \sin(30^\circ) = \frac{1}{2} \), we have: \[ \sin^4(30^\circ) = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \] Substituting this back, we get: \[ 12 = \frac{k}{\frac{1}{16}} \implies k = 12 \times \frac{1}{16} = 12 \times 16 = 192 \] 4. **Calculating for \( \theta = 90^\circ \)**: Now, we need to find the number of alpha particles scattered at \( \theta = 90^\circ \): \[ n = \frac{k}{\sin^4(45^\circ)} \] Since \( \sin(45^\circ) = \frac{1}{\sqrt{2}} \), we have: \[ \sin^4(45^\circ) = \left(\frac{1}{\sqrt{2}}\right)^4 = \frac{1}{4} \] Substituting \( k = 192 \) into the equation: \[ n = \frac{192}{\frac{1}{4}} = 192 \times 4 = 768 \] 5. **Final Answer**: The number of alpha particles scattered at an angle of \( 90^\circ \) is \( 768 \) per minute.
Promotional Banner

Topper's Solved these Questions

  • STRUCTURE OF ATOM

    AAKASH INSTITUTE|Exercise ASSIGNMENT ( SECTION -C) Objective Type Questions (More than one options are correct)|15 Videos
  • STRUCTURE OF ATOM

    AAKASH INSTITUTE|Exercise ASSIGNMENT ( SECTION -D) Linked Comprehension Type Questions)|9 Videos
  • STRUCTURE OF ATOM

    AAKASH INSTITUTE|Exercise ASSIGNMENT ( SECTION -A) Objective Type Questions (One option is correct)|47 Videos
  • STRUCTURE OF ATOM

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION -D) Assertion-Reason Type Questions|15 Videos
  • SURFACE CHEMISTRY

    AAKASH INSTITUTE|Exercise Assignment Section - C (Assertion - Reason type questions)|10 Videos

Similar Questions

Explore conceptually related problems

In Rutherford scattering experiment, the number of alpha -particles scattered at 60^(@) is 5 xx 10^(6) . The number of alpha -particles scattered at 120^(@) will be

In an alpha -particle scattering experiment, the number of particles scattered at an angle of 90^@ is 100 per minute. Calculate the number of particles scattered at an angle of 60^@

In rutherford's experiment, the mumber of alpha-particles scattered through an angle of 90^(@) is 28 per minute. Then,the number of particles scattered through an angle of 60^(@) per minute by the same nucleus is

In scattering experiment , alpha -particles were deflected by

In an alpha -particle scattering experiment , 100 particles are scattered per minute at an angle of 60^@ . Calculate the number of particles per minute scattered at an angle of 30^@

In Rutherford alpha -sattering experiment , the ratio of number of particles scattered at an angle of 180^@ to the number of particles scattered at an angle of 90^@ is alpha:4 . What is the value of alpha ?

Rutherford's experiment of scattering of alpha -particles shows that atom

If in Rutherford's experiment, the number of particles scattered at 90^(@) angle are 28 per min, then number of scattered particles at an angle 60^(@) and 120^(@) will be

AAKASH INSTITUTE-STRUCTURE OF ATOM -ASSIGNMENT ( SECTION -B) Objective Type Questions (One option is correct)
  1. H(α) line of Balmer series is 6500 Å . The wave length of H(gamma) is

    Text Solution

    |

  2. Graph of incident freuency with stopping potential in photoelectric ef...

    Text Solution

    |

  3. The orbital diagram in which Hund's rule and Aufbau principle is viola...

    Text Solution

    |

  4. The total spin resulting from d^(9) configuration is

    Text Solution

    |

  5. How many nodal planes are present in 4d(z^(2)) ?

    Text Solution

    |

  6. An electron is moving in 3^(rd) orbit of Li^(+2) and its separation e...

    Text Solution

    |

  7. If radius of 2^(nd) orbit is x then di-Broglie wavelength in4^(th)orbi...

    Text Solution

    |

  8. Calculate the wavelength of light required to break the bond between t...

    Text Solution

    |

  9. An electron is moving in 3rd orbit of Hydrogen atom . The frequency of...

    Text Solution

    |

  10. The wavelength of a spectral life for an electronic transition inverse...

    Text Solution

    |

  11. In the Rutherford scattering experiment the number of alphaparticles s...

    Text Solution

    |

  12. The number of quanta of radiation of frequncy 4.98 xx 10^(14) s^(-1) r...

    Text Solution

    |

  13. Photoelectric emmision is observed from a surface when lights of freq...

    Text Solution

    |

  14. The velocity of electron moving in 3rd orbit of He^(+) is v. The veloc...

    Text Solution

    |

  15. Which electronic configuration is not allowed for a neutral atom or an...

    Text Solution

    |

  16. If E(1) , E(2) "and" E(3) represent respectively the kinetic energies ...

    Text Solution

    |

  17. Choose the correct statement

    Text Solution

    |

  18. Consider psi (wave function) of 2s atomic orbital of H-atom is- psi...

    Text Solution

    |

  19. In which of the following, maximum wavelength is emitted ?

    Text Solution

    |

  20. For a microscopic object Deltax is zero than Deltav will be ( Accordin...

    Text Solution

    |