Home
Class 12
PHYSICS
A rof of length l with thermally insulat...

A rof of length `l` with thermally insulated lateral surface consists of material whose heat conductivity coefficient varies with temperature as `x = alpha//T`, where `alpha` is a constant. The ends of the rod are kept at temperatures `T_1` and `T_2`. Find the function `T (x)`, where `x` is the distance from the end whose temperature is `T_1`, and the heat flow density.

Text Solution

Verified by Experts

`T=T_(1)((T_(2))/(T_(1)))^(x//L)`
Promotional Banner

Topper's Solved these Questions

  • THERMAL PROPERTIES OF MATTER

    AAKASH INSTITUTE|Exercise Assignment (Section-I) Subjective Type Questions|5 Videos
  • TEST 9

    AAKASH INSTITUTE|Exercise EXAMPLE|61 Videos
  • THERMODYNAMICS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION -D) (Assertion - Reason Type Questions)|10 Videos

Similar Questions

Explore conceptually related problems

A rod of length l with thermally insulated lateral surface consists of material whose heat conductivity coefficient varies with temperature as k= a//T , where a is a constant. The ends of the rod are kept at temperatures T_1 and T_2 . Find the function T(x), where x is the distance from the end whose temperature is T_1 .

A rod of length L with sides fully insulated is made of a material whose thermal conductivity K varies with temperature as K=(alpha)/(T) where alpha is constant. The ends of rod are at temperature T_(1) and T_(2)(T_(2)gtT_(1)) Find the rate of heat flow per unit area of rod .

A rod of length l with thermally insulated lateral surface is made of a material whose thermal conductivity varies as K=sc//T where c is a constant. The ends are kept at temperatures T_(1) and T_(2) . Find the temperature at a distance x from te first end where the temperature is T_(1) and the heat flow density.

A rod of length l with thermally insulated lateral surface is made of a matrical whose thermal conductivity varies as K =C//T where C is a constant The ends are kept at temperature T_(1) and T_(2) The temperature at a distance x from the first end where the temperature is T_(1), T =T_(1)((T_(2))/(T_(1)))^(nx//2l) Find the value of n? .

A rod of length l (laterally thermally insulated) of the uniform cross sectional area A consists of a material whose thermal conductivity varies with temperature as K=(K_(0))/(a+bT') where K_(0) , a and b are constants. T_(1) and T_(2)(lt T_(1)) are the temperatures of the ends of the rod. Then, the rate of flow of heat across the rod is

A rod of length l and cross sectional area A has a variable conductivity given by K=alphaT , where alpha is a positive constant T is temperatures in Kelvin. Two ends of the rod are maintained at temperatures T_1 and T_2(T_1gtT_2) . Heat current flowing through the rod will be

Consider one mole of an ideal gas whose volume changes with temeperature as V=(alpha)/(T) , where alpha is a constant. Heat is supplied to the gas to raise its temperature by DeltaT . If gamma adiabatic constant then choose the correct options.

A rod of length l and cross-section area A has a variable thermal conductivity given by K = alpha T, where alpha is a positive constant and T is temperature in kelvin. Two ends of the rod are maintained at temperature T_(1) and T_(2) (T_(1)gtT_(2)) . Heat current flowing through the rod will be

The coefficient of linear expansion 'alpha ' of the material of a rod of length l_(0) varies with absolute temperature as alpha = aT -bT^(2) where a & b are constant. The linear expansion of the rod when heated from T_(1) to T_(2) = 2T_(1) is :-

The graph of (x/m) vs P at two different temperature T_1 and T_2 is [where T_1gtT_2 ]