Home
Class 12
PHYSICS
When light of wavelength 5000 Å in vacuu...

When light of wavelength 5000 Å in vacuum travels through same thickness in glass and water, the difference in the number of waves is 400. Find thickness. (Refractive indices of glass and water are `(3)/(2)` and `(4)/(3)` respectively)

Text Solution

Verified by Experts

Difference in number of waves `= (l)/(lambda)(mu_(g) - mu_(w))`
`400 = (I)/(5000 xx 10^(-10))[(3)/(2)-(4)/(3)]`
`I = 400 xx 5 xx 6 xx 10^(-7)`
`= 1.2 xx 10^(-3)m = 1.2 mm`
Promotional Banner

Similar Questions

Explore conceptually related problems

When light of wavelength lambda_(0) in vacuum travels through same thickness ‘t’ in glass and water, the difference in the number of waves is. (Refractive indices ofglass and water are mu_(g) and mu_(w) respectively.)

When light of wavelength 4000overset(o)(A) in vacuum travels through the same thickness in air and vacuum the difference in the number of waves is one. Find the thickness ( mu_(air) =1.0008).

The wavelength of light in vacuum is lambda_(0) . When it travels normally through glass of thickness 't'. Then find the number of waves of light in ‘t’ thickness of glass (Refractive index of glass is mu )

If the absolute refractive indices of glass and water are 5/3 and 4/3 respectively, then what is the refractive index of glass with respect to water ?

Find the refractive index of water with respect to glass if the refractive index of water is 4/3 and the refractive index of glass is 3/2.

If the absolute refractive indices of glass and water are 3/2 and 4/3 respectively, what is the refractive index of glass with respect to water ?