Home
Class 12
PHYSICS
Which of the following is/are possible v...

Which of the following is/are possible values of radius of stable orbit of hydrogen atom ?
(a) `lambda/(2pi)` , (b)`(3lambda)/(4pi)` , (c )`lambda/pi` , (d)`(5lambda)/(4pi)`

Text Solution

Verified by Experts

`r_n=(nlambda)/(2pi)`
`therefore` (a) & (c ) are correct answer.
Promotional Banner

Topper's Solved these Questions

  • ATOMS

    AAKASH INSTITUTE|Exercise Try Yourself|24 Videos
  • ATOMS

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION A Objective (One option is correct )|35 Videos
  • ALTERNATING CURRENT

    AAKASH INSTITUTE|Exercise Assignment (Section-J) (Aakash Chailengers Questions)|1 Videos
  • COMMUNICATION SYSTEMS

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION D (Assertion-Reason)|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following can be the angular momentum of an electron orbiting in a hydrogen atom ? ltbr. (a) "4h"/pi , (b) "3h"/(2pi) , (c ) "3h"/(4pi) , (d) h/pi

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

The sum of possible value of lambda for which the system of equations (lambda+1)x+8y=4 lambda and lambda x+(lambda+3)y=3 lambda-1 is inconsistent is

Let lambda=tan((3 pi)/(4)-(1)/(4)sin^(-1)(-(4)/(5)))then(lambda^(2)-lambda+22)^(2)is

If (tan3A)/(tan A)=lambda then a possible value of (sin3A)/(sin A) is (A) (8)/(3) if lambda=3 (B) 1 if lambda=-1 (C) (1)/(5) if lambda=(-1)/(9) (D) 4 if lambda=2

the values of lambda for which (lambda^(2)-3 lambda+2)x^(2)+(lambda^(2)-5 lambda+6)+lambda^(2)-4=0 is identity in x is

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

lim_(x->pi)(2-lambda/x)^(2tan((pipi)/(2lambda)))=1/e, then lambda is equal to -

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0