Home
Class 12
MATHS
If a and b are positive, use mathematica...

If a and b are positive, use mathematical induction to prove that `((a+b)/(2))^(n) le (a^(n)+b^(n))/(2) AA n in N`

Text Solution

Verified by Experts

`P(n): ((a+b)/(2))^(n) le (a^(n)+b^(n))/(2)`
STEP-1: For n=1
`P(i): (a+b)/(2) le (a+b)/(2)`
Which is true for n=1
STEP-II: Assume it is true for n=k, then
`P(k): ((a+b)/(2))^(k)le (a^(k)+b^(k))/(2)`
STEP III: For n=k+1
`((a+b)/(2))^(k+1)=((a+b)/(2))((a+b)/(2))^(k)le ((a+b)/(2))((a^(k)+b^(k))/(2)) ("By assumption step")`
`Rightarrow ((a+b)/(2))^(k+1) le (1)/(4)[(a^(k+1)+b^(k+1))+a^(k)b+ab^(k)]`
`Rightarrow ((a+b)^(2)/2)^(k+1) le (1)/(4)[2(a^(k+1)+b^(k+1))-a^(k+1)=b^(k+1)+a^(k)b+ab^(k)]`
`Rightarrow ((a+b)^(2)/2)^(k+1) le (1)/(4)[2(a^(k+1)+b^(k+1))-(a-b)(a^(k)-b^(k))]`
`le ((a^(k+1)+b^(k+1))/(2))-((a-b)(a^(k)-b^(k)))/(4)`
`therefore ((a+b)/(2))^(k+1) le (a^(k+1)+b^(k+1))/(2)`
Hence the statement is true for n=k+1 any by the principle of induction it is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE|Exercise Example|11 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE|Exercise Try yourself|9 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that n^(2)-n+41 is prime.

Using principle of mathematical induction prove that sqrt(n) =2

If A is a square matrix,using mathematical induction prove that (A^(T))^(n)=(A^(n))^(T) for all n in N

If A is a square matrix,using mathematical induction prove that (A^(T))^(n)=(A^(n))^(T) for all n in N.

Using mathematical induction prove that : (d)/(dx)(x^(n))=nx^(n-1)f or backslash all n in N

Using the principle of mathematical induction, prove that n<2^(n) for all n in N

using Mathematical induction,prove that 3^(2n)+7 is divisible by 8.

Using mathematical induction prove that (d)/(dx)(x^(n))=nx^(n-1) for all positive integers n.

Using mathematical induction, prove that for x^(2n-1)+y^(2n-1) is divisible by x+y for all n in N

Using mathematical induction prove that x+4x+7x+......+(3n-2)x=(1)/(2)n(3n-1)x