Home
Class 12
MATHS
Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+......

Prove that `1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N`

Text Solution

Verified by Experts

For n=1, so LHS=RHS ….(i)
Assume the result for n=k
`i.e. 1+(1)/(sqrt2)+(1)/(sqrt3)+.....+(1)/(sqrtk) ge sqrtk ....(ii)`
For n=k+1
LHS=`1+(1)/(sqrt2)+..+(1)/(sqrtk)+(1)/(sqrt(k+1))`
`ge sqrtk+(1)/(sqrt(k+1))" "["using (ii)"]`
`gt sqrtk+(1)/(sqrt(k+1)+sqrtk)"Note"`
`=sqrtk+sqrt((k+1))-sqrtk=sqrt((k+1))`
i.e. the result is true for n=k+1
Hence, by induction, the result is true `AA n in N`.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE|Exercise Example|11 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE|Exercise Try yourself|9 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that (sqrt(2)-1)^(2n)

Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim _( x to oo) (1)/(sqrtn sqrt(n+1))+ (1)/(sqrtn sqrt(n+2)) is equal to :

If a_(1),a_(2),a_(3)... are in A.P then prove that (1)/(sqrt(a)_(1)+sqrt(a)_(2))(+)/(sqrt(a)_(2)+sqrt(a)_(3))+...+(1)/(sqrt(a)_(n-1)+sqrt(a)_(n))=(n-1)/(sqrt(a)_(n)+sqrt(a)_(1))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals