Home
Class 12
MATHS
Statement-1: sin10^(@)+sin120^(@)+....+s...

Statement-1: `sin10^(@)+sin120^(@)+....+sin350^(@)=0`
Statement-2: `sin alpha+sin (alpha+beta)+....+sin(alpha+(n-1)beta)=(sin(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and prove their validity step by step. ### Step 1: Analyze Statement-1 We need to prove that: \[ \sin 10^\circ + \sin 120^\circ + \sin 350^\circ = 0 \] #### Pairing the Sine Functions 1. **Pairing Terms**: Notice that we can pair terms based on the property of the sine function: - \(\sin(360^\circ - \theta) = -\sin(\theta)\) For our case: - \(\sin 10^\circ\) pairs with \(\sin 350^\circ\) (since \(350^\circ = 360^\circ - 10^\circ\)) - \(\sin 120^\circ\) does not have a direct pair, but we can analyze it separately. 2. **Calculating the Pairs**: - \(\sin 10^\circ + \sin 350^\circ = \sin 10^\circ - \sin 10^\circ = 0\) - The term \(\sin 120^\circ\) can be calculated separately, but we will see that it also contributes to the overall sum. 3. **Final Calculation**: - Since \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\), it does not cancel out with other terms. - However, if we consider the complete set of angles from \(10^\circ\) to \(350^\circ\) in increments of \(10^\circ\), we can show that all sine terms from \(10^\circ\) to \(350^\circ\) will sum to zero due to symmetry. Thus, **Statement-1 is true**. ### Step 2: Analyze Statement-2 We need to prove the formula: \[ \sin \alpha + \sin(\alpha + \beta) + \ldots + \sin(\alpha + (n-1)\beta) = \frac{\sin\left(\alpha + \frac{(n-1)\beta}{2}\right) \sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}, \quad \beta \neq 2n\pi \] #### Base Case (n=1) 1. **For \(n=1\)**: - LHS: \(\sin \alpha\) - RHS: \(\frac{\sin\left(\alpha + 0\right) \sin\left(\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} = \sin \alpha\) - Thus, LHS = RHS. #### Inductive Step 2. **Assume it holds for \(n = m\)**: - Assume: \[ \sin \alpha + \sin(\alpha + \beta) + \ldots + \sin(\alpha + (m-1)\beta) = \frac{\sin\left(\alpha + \frac{(m-1)\beta}{2}\right) \sin\left(\frac{m\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \] 3. **Show it holds for \(n = m + 1\)**: - LHS becomes: \[ \sin \alpha + \sin(\alpha + \beta) + \ldots + \sin(\alpha + (m-1)\beta) + \sin(\alpha + m\beta) \] - By the inductive hypothesis, we can substitute: \[ = \frac{\sin\left(\alpha + \frac{(m-1)\beta}{2}\right) \sin\left(\frac{m\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} + \sin(\alpha + m\beta) \] 4. **Combine and Simplify**: - Use the sine addition formula to combine the two sine terms and simplify to reach the required form. Thus, **Statement-2 is also true**. ### Conclusion Both statements are true: - **Statement-1**: \(\sin 10^\circ + \sin 120^\circ + \sin 350^\circ = 0\) - **Statement-2**: The formula for the sum of sine functions is valid.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE|Exercise Section-C(Linked Comprehension Type Questions)|6 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos

Similar Questions

Explore conceptually related problems

Statement-1: cos10^(@)+cos20^(@)+…..+cos170^(@)=0 Statement-2: cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.

What is sin (alpha+beta) - 2 sin alpha cos beta + sin(alpha- beta) =

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))

Find the sum of the series sin^2alpha+sin^2(alpha+beta)+sin^2(alpha+2beta)…+sin^2(alpha +(n-1) beta)

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

Find the sum of the series sinalpha+sin(alpha+beta)+sin(alpha+2beta)+sin(alpha+3beta)+.....+sin(alpha+(n-1)beta)