Home
Class 12
MATHS
Find the particular solution of the diff...

Find the particular solution of the differential equation.
`(dy)/(dx) = ((x sin((x)/(y))-y cos ((x)/(y)))y)/((y cos ((x)/(y))+x sin ((x)/(y)))x)`, given that y = 1 when `x = (pi)/(4)`

Text Solution

Verified by Experts

`(dy)/(dx) = ((x sin((x)/(y))-y cos ((x)/(y)))y)/((y cos ((x)/(y))+x sin ((x)/(y)))x) rArr ((y cos .(x)/(y)+x sin.(x)/(y))x)/((x sin.(x)/(y)-y cos.(x)/(y))y)`
Putting x = vy
`rArr (dx)/(dy) = v + y (dv)/(dy)`
`rArr v + y (dv)/(dy) = ((y cos v + vy sin v)vy)/((vy sin v- y cos v)y)`
`y(dv)/(dy) = (v cos v + v^(2) sin v - v^(2) sin v + v cos v)/(v sin v - cos v)`
`= (2v cos v)/(v sin - cos v)`
`rArr (v sin v - cos v)/(v cos v)dv = 2(dy)/(y)`
Integrating both sides, we get
`int tan v dv - int (1)/(v)dv = 2int(dy)/(y)`
`rArr ln |sec v| - ln|v| = 2ln|y| + lnc`
`(|sec v|)/(|v|) = cy^(2)`
`rArr sec|(x)/(y)| = cy^(2)|v|`
Substitutinh `x = (pi)/(4), y = 1`, we get `c = (4sqrt(2))/(pi)`
`:. sec|(x)/(y)| = (4sqrt(2))/(pi)|(x)/(y)|.y^(2)`
or `|(x)/(y)|y^(2) cos |(x)/(y)| = (pi)/(4sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|26 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Competition Level Questions|35 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx)=sin(x+y)+cos(x+y) is:

The solution of the differential equation (dy)/(dx)+(sin2y)/(x)=x^(3)cos^(2)y

Solution of differential equation (dy)/(dx)=sin(x+y)+cos(x+y) is

The solution of the differential equation (dy)/(dx) = (x(2 log x+1))/(sin y +y cos y) is

Solution of the differential equation cos xdy=y(sin x-y)dx

solution of differential equation x cos x(dy)/(dx)+y(x sin x+cos x)=1 is

Find the particular4solution of the differential equation (x-y)(dy)/(dx)=x+2y, given that when x=1,y=0