Home
Class 12
MATHS
Given two curves y = f(x) passing throug...

Given two curves y = f(x) passing through (0, 1) and `y = int_(-oo)^(x) f(t) dt` passing through (0, 1/n). The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis, the curve is given by

A

`y = e^(nx)`

B

y = nx

C

y = nlnx

D

`y = nx^(2)`

Text Solution

Verified by Experts

`f(x) = e^(nx)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - I (Subjective Type Questions)|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos

Similar Questions

Explore conceptually related problems

Given two curves: y=f(x) passing through the point (0,1) and g(x)=int_(-oo)^( x)f(t)dt passing through the point (0,(1)/(n)). The tangents drawn to both the curves at the points with equal abscissas intersect on the x - axis.Find the curve y=f(x) .

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The area bounded by the curve y=f(x), y=x and ordinates x=0 and x=1 is (A) (e^2-1)/2 (B) (e^2-1)/3 (C) (e^3-1)/3 (D) none of these

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The equation of curve y=f(x) is (A) y=e^(3x) (B) y=e^(x/3) (C) y=3^x (D) y=1/3^x

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question: lim_(xrarr0) ((f(x))^2-1)/x= (A) 3 (B) 6 (C) 4 (D) none of these

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then Number of solutions f(x) = 2ex is equal to

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then The function f(x) is

We are given the curvers y=int_(- infty)^(x) f(t) dt through the point (0,(1)/(2)) any y=f(x) , where f(x) gt 0 and f(x) is differentiable , AA x in R through (0,1) Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists The number of solutions f(x) =2ex is equal to

We are given the curvers y=int_(- infty)^(x) f(t) dt through the point (0,(1)/(2)) any y=f(x) , where f(x) gt 0 and f(x) is differentiable , AA x in R through (0,1) Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists The function f(x) is