Home
Class 12
MATHS
If Sigma(i=1)^(10) xi=60 and Sigma(i=1)^...

If `Sigma_(i=1)^(10) x_i=60` and `Sigma_(i=1)^(10)x_i^2=360` then `Sigma_(i=1)^(10)x_i^3` is

A

2160

B

3250

C

3360

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \Sigma_{i=1}^{10} x_i^3 \) given that \( \Sigma_{i=1}^{10} x_i = 60 \) and \( \Sigma_{i=1}^{10} x_i^2 = 360 \). ### Step-by-Step Solution: 1. **Identify the Given Information:** - We have \( \Sigma_{i=1}^{10} x_i = 60 \) (sum of the observations). - We also have \( \Sigma_{i=1}^{10} x_i^2 = 360 \) (sum of the squares of the observations). 2. **Calculate the Mean (\( \bar{x} \)):** - The mean \( \bar{x} \) can be calculated as: \[ \bar{x} = \frac{\Sigma_{i=1}^{10} x_i}{10} = \frac{60}{10} = 6 \] 3. **Calculate the Variance:** - The variance \( \sigma^2 \) is given by the formula: \[ \sigma^2 = \frac{\Sigma_{i=1}^{10} x_i^2}{n} - \bar{x}^2 \] - Substituting the known values: \[ \sigma^2 = \frac{360}{10} - 6^2 = 36 - 36 = 0 \] 4. **Interpret the Variance:** - A variance of 0 indicates that all observations are the same. Therefore, we can conclude: \[ x_1 = x_2 = x_3 = \ldots = x_{10} = x \] 5. **Find the Value of \( x \):** - Since \( \Sigma_{i=1}^{10} x_i = 60 \): \[ 10x = 60 \implies x = 6 \] 6. **Calculate \( \Sigma_{i=1}^{10} x_i^3 \):** - Since all \( x_i \) are equal to 6: \[ \Sigma_{i=1}^{10} x_i^3 = 10 \cdot (6^3) = 10 \cdot 216 = 2160 \] ### Final Answer: \[ \Sigma_{i=1}^{10} x_i^3 = 2160 \]
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    AAKASH INSTITUTE|Exercise Section-B Linked Comprehension|5 Videos
  • STATISTICS

    AAKASH INSTITUTE|Exercise Section-C Assertion-Reason|15 Videos
  • STATISTICS

    AAKASH INSTITUTE|Exercise Section-C Assertion-Reason|15 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos

Similar Questions

Explore conceptually related problems

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

Given Sigma_(i=1)^(20) a_i=100, Sigma_(i-1)^(20) a_i^2=600, Sigma_(i-1)^(20) b_i=140, Sigma_(i-1)^(20)b_i^2=1000 , where a_i,b_i denotes length and weight of an observations. Then which is more varying ?

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

A data consists of n observations : x_(1), x_(2),……, x_(n) . If Sigma_(i=1)^(n)(x_(i)+1)^(2)=11n and Sigma_(i=1)^(n)(x_(i)-1)^(2)=7n , then the variance of this data is

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If sum_(i=1)^(6)sin^(-1)x_(i)+cos^(-1)y_(i)=9 pi then int_(Sigma_(i=1)^(6)y_(i))^(6)x ln(1+x^(2))((e^(x))/(1+e^(2x)))dx

If sum_(i=1)^(10)(x_(i)-15)=12 and sum_(i=1)^(10)(x-15)^(2)=18 then the S.D.of observation x_(1),x_(2),x_(3),....x_(10) is: