Home
Class 12
MATHS
The value of the integral int (cos^3x+co...

The value of the integral `int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx` is (A) `sin x-6tan^(-1) (sin x)+C` (B) `sin x-2 (sin x)^(-1)+C` (C) `sin x-2 (sin x)^(-1)-6tan^(-1) (sin x)+C` (D) `sin x-2 (sin x)^(-1)+5tan^(-1) (sin x)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is sin x-6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+Csin x-2(sin x)^(-1)+6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C

int(cos^3x+cos^5x)/(sin^2x+sin^4x)dx= (A) sinx-6tan^-1(sinx)+c (B) sinx-2(sinx)^-1-6tan^-1(sinx)+c (C) sin^-1x-2(sinx)^-1+5tan^-1(sinx)+c (D) none of these

Evaluate int sin2x tan^(-1)(sin x)dx

Evaluate: int sin2x tan^(-1)(sin x)dx

int(dx)/((sin x+4)(sin x-1))=(1)/((tan x)/(2)-1)+B tan^(-1)f(x)+c

If int (1)/(cos^(6) x + sin^(6) x) dx = tan^(-1) f(x) + C then f(x) =

int ((sin x + cos x)(2-sin 2x))/(sin^(2)2x)dx= a) (sin x+cos x)/(sin 2x) +C b) (sin x- cos x)/(sin 2x)+C c) (sin x)/(sin x+cos x)+C d) (sin x)/(sin x-cos x)+C

If int cos x cos 2x cos 3x dx = A_(1)sin 2x + A_(2) sin 4x + A_(3) sin 6x + C then

Prove : int ( sin x - cos 2x)/(1 + sin x ) dx = - ( x+2 cos x ) + c

The value of 2 sin 3x cos 2x is equal to .............. A) sin 5x+ sin x B) sin 3x+ sin x C) sin 7x + sin x D) sin 4x + sin x