Home
Class 12
MATHS
Let f(x)=cos(log x). Then the value of t...

Let `f(x)=cos(log x).` Then the value of the integral `int_- 2010^2010(f(x)*f(f(x))-1/2{f(x/(f(x))+f(xf(x))}dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Prove that the value of the integral, int_(0)^(2a)(f(x))/(f(x)+f(2a-x))dx is equal to a.

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is