Home
Class 12
MATHS
The principal value of tan^-1(-sqrt3) is...

The principal value of `tan^-1(-sqrt3)` is

A

`(2pi)/3`

B

`(4pi)/3`

C

`-pi/3`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let `tan^(-1)(-sqrt(3))=x`, where `x in (-pi/2,pi/2)`.
Then, `tanx=-sqrt(3)=-tanpi/3=tan(-pi/3) rArr x=-pi/3`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

The principal value of tan^(-1)sqrt(3) is "……."

Find the principal value of tan^(-1)(-sqrt3).

Find the principal value of tan^(-1)(-sqrt(3))

The principal value of tan ^(-1)(-sqrt(3)) is

The principal value of tan^(-1) sqrt(3) div cos ^(-1) (- (1)/(2)) is

Find the principal value of tan^(-1)(-1/sqrt3) .

Write the principal value of tan^(-1) (sqrt(3)) +"cosec"^(-1) (-2)

Find the principal value of cot^(-1)(-sqrt3)

Find the principal value of : tan^(-1) sqrt(3)