Home
Class 12
MATHS
The value of tan^(-1)(tan(8*pi/6)) is...

The value of `tan^(-1)(tan(8*pi/6))` is

A

`(7pi)/6`

B

`(5pi)/3`

C

`pi/3`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let `tan^(-1)(tan(8pi)/6)=x`, where `x in (-pi/2,pi/2)`.
Then, `tanx=tan(8pi)/6 = tan(pi+2pi/6)=tanpi/3 rArr x=pi/3`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(tan((7pi)/6))

tan^(-1)(tan^(5 pi/6))

The value of tan^(-1)tan(-6) is

2tan^(-1)(tan((7pi)/6))

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

The value of sin{tan^(-1) (tan 7pi/6) + cos^(-1)(cos 7pi/3)} is _____.

tan^(-1)(tan""(7pi)/(6))

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))