Home
Class 12
MATHS
The value of "cosec"^(-1)("cosec"(4pi)/3...

The value of `"cosec"^(-1)("cosec"(4pi)/3)` is

A

`(3pi)/4`

B

`-pi/3`

C

`-pi/4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \csc^{-1}(\csc(4\pi/3)) \). ### Step-by-Step Solution: 1. **Identify the angle**: We start with the angle \( \frac{4\pi}{3} \). This angle can be rewritten in terms of \( \pi \): \[ \frac{4\pi}{3} = \pi + \frac{\pi}{3} \] 2. **Use the property of cosecant**: The cosecant function has the property that: \[ \csc(\pi + \theta) = -\csc(\theta) \] Therefore, we can apply this property: \[ \csc\left(\frac{4\pi}{3}\right) = \csc\left(\pi + \frac{\pi}{3}\right) = -\csc\left(\frac{\pi}{3}\right) \] 3. **Calculate \( \csc\left(\frac{\pi}{3}\right) \)**: We know that: \[ \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] Thus, we have: \[ \csc\left(\frac{4\pi}{3}\right) = -\frac{2}{\sqrt{3}} \] 4. **Substitute into the inverse cosecant**: Now we substitute this value into the inverse cosecant function: \[ \csc^{-1}\left(\csc\left(\frac{4\pi}{3}\right)\right) = \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) \] 5. **Determine the angle for the inverse cosecant**: The value \( -\frac{2}{\sqrt{3}} \) corresponds to an angle in the fourth quadrant. The reference angle for \( \frac{2}{\sqrt{3}} \) is \( \frac{\pi}{3} \), thus: \[ \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = -\frac{\pi}{3} \] ### Final Answer: Thus, the value of \( \csc^{-1}\left(\csc\left(\frac{4\pi}{3}\right)\right) \) is: \[ \boxed{-\frac{\pi}{3}} \]

To solve the problem, we need to find the value of \( \csc^{-1}(\csc(4\pi/3)) \). ### Step-by-Step Solution: 1. **Identify the angle**: We start with the angle \( \frac{4\pi}{3} \). This angle can be rewritten in terms of \( \pi \): \[ \frac{4\pi}{3} = \pi + \frac{\pi}{3} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

What is the value of the following functions (using principal value) "cosec"^(-1)("cosec"(3pi)/(4))

If 3cotA=4 , find the value of ("Cosec"^(2)A+1)/("Cosec"^(2)A-1) .

The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is ____________

Find the value of : tan(cosec^(-1)(sqrt(41))/4),

Find the value of cosec { cot( cot^(-1).(3pi)/4)}

Find the value of cosec{cot(cot^(-1)(3pi)/4)}