Home
Class 12
MATHS
pi/3-sin^(-1)(-1/2)=?...

`pi/3-sin^(-1)(-1/2)=?`

A

0

B

`(2pi)/3`

C

`pi/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{\pi}{3} - \sin^{-1}(-\frac{1}{2}) \), we can follow these steps: ### Step 1: Simplify \( \sin^{-1}(-\frac{1}{2}) \) We know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, we can write: \[ \sin^{-1}(-\frac{1}{2}) = -\sin^{-1}(\frac{1}{2}) \] ### Step 2: Find \( \sin^{-1}(\frac{1}{2}) \) The value of \( \sin^{-1}(\frac{1}{2}) \) is known from trigonometric values: \[ \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \] ### Step 3: Substitute back into the expression Now substituting back, we have: \[ \sin^{-1}(-\frac{1}{2}) = -\frac{\pi}{6} \] ### Step 4: Substitute into the original expression Now we can substitute this value into the original expression: \[ \frac{\pi}{3} - \sin^{-1}(-\frac{1}{2}) = \frac{\pi}{3} - \left(-\frac{\pi}{6}\right) \] This simplifies to: \[ \frac{\pi}{3} + \frac{\pi}{6} \] ### Step 5: Find a common denominator and add To add these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6. Therefore: \[ \frac{\pi}{3} = \frac{2\pi}{6} \] Now we can add: \[ \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Final Answer Thus, the value of the expression \( \frac{\pi}{3} - \sin^{-1}(-\frac{1}{2}) \) is: \[ \frac{\pi}{2} \] ---

To solve the expression \( \frac{\pi}{3} - \sin^{-1}(-\frac{1}{2}) \), we can follow these steps: ### Step 1: Simplify \( \sin^{-1}(-\frac{1}{2}) \) We know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

sin(pi/6-sin^(-1)(-1/2))=?

Evaluate following 1. sin(cos^(-1) 3//5) 2. cos(tan^(-1)3//4) 3. sin(pi/2-sin^(-1) (-1/2))

sin[(pi)/(2)-sin^(-1)-1/2]

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

sin[(pi)/(2)-sin^(-1)(-(1)/(2))]

sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?

The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

Evaluate sin{pi/2-sin^(-1)(-sqrt(3)/2)} .

The principal value of cos^(-1)(cos 2pi/3)+ sin^(-1) sin(2pi/3) is