Home
Class 12
MATHS
If x ne 0 then cos(tan^(-1)+cot^(-1)x)=?...

If `x ne 0` then `cos(tan^(-1)+cot^(-1)x)`=?

A

`-1`

B

1

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`cos(tan^(-1)+cot^(-1)x)=cospi/2=0`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

cot(tan^(-1)x+cot^(-1)x)

sin {cot^(-1)[tan (cos^(-1)x)]=

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Write the value of cos((tan^(-1)x+cot^(-1)x)/3) , when x=-1/(sqrt(3)) .

Evaluate: (i) sin(tan^(-1)x+(tan^(-1)1)/(x)) for x>0( ii) cot(tan^(-1)a+cot^(-1)a)

tan^(-1)(cot x)+cot^(-1)(tan x)

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

The number values of x if cos(tan^(-1)(1+x))=sin(cot^(-1)x) is/are

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))