Home
Class 12
MATHS
sin[cos^(-1)(3/5)]...

`sin[cos^(-1)(3/5)]`

A

`3/4`

B

`4/5`

C

`3/5`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `cos^(-1)3/5=x`, where `x in [0,pi]`. Then, `cos x=3/5`.
`therefore` since `x in [0,pi], sin x gt 0`.
`therefore sinx=sqrt(1-9/25)=sqrt(16/25)=4/5 rArr sin(cos^(-1)3/5)=4/5`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Evaluate sin[2cos^(-1)(-3/5)] .

sin{2\ cos^(-1)(-3/5)} is equal to 6//25 (b) 24//25 (c) 4//5 (d) -24//25

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5) , then x has the value:

If |z-25i|le15 , then |maximum arg(z) - minimum arg(z)| equals (A) (pi)/(2)+cos^(-1)((3)/(5)) (B) sin^(-1)((3)/(5))-cos^(-1)((3)/(5)) (C) 2cos^(-1)((4)/(5)) (D) 2cos^(-1)((1)/(5))

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

cos[2cos^(-1).(1)/(5)+sin^(-1).(1)/(5)] =

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

The value of sin[2"cos"^(-1)(sqrt(5))/(3)] is