Home
Class 12
MATHS
For the principal value, evaluate tan...

For the principal value, evaluate `tan^(-1)(-1)+cos^(-1)(-1/(sqrt(2)))`

A

`pi/2`

B

`pi`

C

`(3pi)/2`

D

`(2pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
A

Range of `tan^(-1)` is `(-pi/2,pi/2)`.
`tan^(-1)(-1)=x rArr tanx=-1=-tanpi/4 = tan(-pi/4) rArr x=-pi/4`.
Range of `cos^(-1)` is `[0,pi]`.
`cos^(-1)(-1/sqrt(2))=y rArr cosy=-1/sqrt(2)=-cospi/4=cos(pi-pi/4)=cos(3pi)/4 rArr y=(3pi)/4`.
`therefore` given exp. `=-pi/4+(3pi)/4=(2pi)/4=pi/2`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

For the principal value,evaluate tan^(-1)sqrt(3)-sec^(-1)(-2)

For the principal value,evaluate tan^(-1){2sin(4(cos^(-1)(sqrt(3)))/(2))}

The value of tan^(-1)(1)+cos^(-1)(-(1)/(sqrt2)) is:

Find the principal value of: tan^(-1)(-1) and cos ec^(-1)(2)

Write the principal value of tan^(-1)(1)+cos^(-1)(-(1)/(2))

For the principal values,evaluate the following: cot^(-1)(-1)+csc^(-1)(-sqrt(2))+secs^(-1)(2)cot^(-1)(-sqrt(3))+tan^(-1)(1)sec^(-1)((2)/(sqrt(3)))

Find the principal value of tan^(-1)(-1/sqrt3) .

For the principal values,evaluate the following: sin^(-1)(-(sqrt(3))/(2))+csc^(-1)(-(2)/(sqrt(3)))sec^(-1)(sqrt(2))+2csc^(-1)(-sqrt(2))sin^(-1)[cos{2csc^(-1)(-2)}]csc^(-1)(2tan(11 pi)/(6))

Find the principal value of tan^(-1)(-sqrt3).

Find the principal value of tan^(-1)(-sqrt(3))