Home
Class 12
MATHS
tan^(-1)1+tan^(-1)1/3=?...

`tan^(-1)1+tan^(-1)1/3=?`

A

`tan^(-1)4/3`

B

`tan^(-1)2/3`

C

`tan^(-1)2`

D

`tan^(-1)3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) \), we can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ### Step-by-Step Solution: **Step 1: Identify the values of \( x \) and \( y \)** Here, we have: - \( x = 1 \) - \( y = \frac{1}{3} \) **Step 2: Check the condition \( xy < 1 \)** Calculate \( xy \): \[ xy = 1 \cdot \frac{1}{3} = \frac{1}{3} \] Since \( \frac{1}{3} < 1 \), we can apply the formula. **Step 3: Apply the formula** Using the formula: \[ \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{1 + \frac{1}{3}}{1 - 1 \cdot \frac{1}{3}}\right) \] **Step 4: Simplify the expression inside the inverse tangent** Calculate the numerator: \[ 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \] Calculate the denominator: \[ 1 - 1 \cdot \frac{1}{3} = 1 - \frac{1}{3} = \frac{2}{3} \] So, we have: \[ \tan^{-1}\left(\frac{\frac{4}{3}}{\frac{2}{3}}\right) = \tan^{-1}\left(\frac{4}{3} \cdot \frac{3}{2}\right) = \tan^{-1}\left(2\right) \] **Step 5: Final result** Thus, we conclude: \[ \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}(2) \] ### Final Answer: \[ \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}(2) \] ---

To solve the problem \( \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) \), we can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =_______.

The vlaue of tan^(-1)1/2+tan^(-1)1/3 is

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

tan^(-1)(1/2)+tan^(-1)(1/3)=?

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to