Home
Class 12
MATHS
tan^(-1)(1/2)+tan^(-1)(1/3)=?...

`tan^(-1)(1/2)+tan^(-1)(1/3)=?`

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

`(2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \), we can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ### Step 1: Identify the values of \( x \) and \( y \) Let: - \( x = \frac{1}{2} \) - \( y = \frac{1}{3} \) ### Step 2: Check the condition \( xy < 1 \) Calculate \( xy \): \[ xy = \left(\frac{1}{2}\right) \left(\frac{1}{3}\right) = \frac{1}{6} \] Since \( \frac{1}{6} < 1 \), we can apply the formula. ### Step 3: Apply the formula Using the formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}}\right) \] ### Step 4: Simplify the numerator and denominator Calculate the numerator: \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] Calculate the denominator: \[ 1 - \frac{1}{6} = \frac{6}{6} - \frac{1}{6} = \frac{5}{6} \] ### Step 5: Substitute back into the formula Now substitute the simplified numerator and denominator back into the formula: \[ \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] ### Step 6: Find the value of \( \tan^{-1}(1) \) We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer Thus, the value of \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \) is: \[ \frac{\pi}{4} \] ---

To solve the expression \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \), we can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)

Find x if tan^(-1)(x) = tan^(-1)(1/2) + tan^(-1)(3/7)

Prove the following: tan^(-1)1/7+2\ tan^(-1)1/3=pi/4

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3