Home
Class 12
MATHS
2tan^(-1)(1/3)=?...

`2tan^(-1)(1/3)=?`

A

`tan^(-1)2/3`

B

`tan^(-1)3/4`

C

`tan^(-1)4/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2 \tan^{-1} \left( \frac{1}{3} \right) \), we can use the formula for the double angle of the inverse tangent function: \[ 2 \tan^{-1}(x) = \tan^{-1\left( \frac{2x}{1 - x^2} \right) \] ### Step-by-Step Solution: 1. **Identify \( x \)**: Here, \( x = \frac{1}{3} \). 2. **Apply the formula**: Substitute \( x \) into the formula: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{3}}{1 - \left( \frac{1}{3} \right)^2} \right) \] 3. **Calculate the numerator**: The numerator becomes: \[ 2 \cdot \frac{1}{3} = \frac{2}{3} \] 4. **Calculate the denominator**: The denominator is: \[ 1 - \left( \frac{1}{3} \right)^2 = 1 - \frac{1}{9} = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \] 5. **Combine the results**: Now, substitute the numerator and denominator into the expression: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{\frac{2}{3}}{\frac{8}{9}} \right) \] 6. **Simplify the fraction**: To simplify: \[ \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} \] 7. **Final result**: Thus, we have: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{3}{4} \right) \] ### Conclusion: The final answer is: \[ \boxed{\tan^{-1} \left( \frac{3}{4} \right)} \]

To solve the expression \( 2 \tan^{-1} \left( \frac{1}{3} \right) \), we can use the formula for the double angle of the inverse tangent function: \[ 2 \tan^{-1}(x) = \tan^{-1\left( \frac{2x}{1 - x^2} \right) \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(1/2)+tan^(-1)(1/3)=?

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =_______.

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

Show that tan^(-1)(1/2)+tan^(-1) (1/3)= pi/4 .

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)