Home
Class 12
MATHS
cos(2tan^(-1)(1/2))=?...

`cos(2tan^(-1)(1/2))=?`

A

`3/5`

B

`4/5`

C

`7/8`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos(2\tan^{-1}(1/2)) \), we can use the properties of inverse trigonometric functions. Here’s the step-by-step solution: ### Step 1: Use the Double Angle Identity We know that: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] For \( \theta = \tan^{-1}(1/2) \), we can express \( \cos(2\tan^{-1}(1/2)) \) using the identity above. ### Step 2: Find \( \sin(\tan^{-1}(1/2)) \) and \( \cos(\tan^{-1}(1/2)) \) From the definition of \( \tan^{-1} \): \[ \tan(\theta) = \frac{1}{2} \] This means that in a right triangle, the opposite side is 1 and the adjacent side is 2. We can find the hypotenuse using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{1^2 + 2^2} = \sqrt{5} \] Thus, \[ \sin(\theta) = \frac{1}{\sqrt{5}} \quad \text{and} \quad \cos(\theta) = \frac{2}{\sqrt{5}} \] ### Step 3: Substitute into the Double Angle Formula Now, substituting into the double angle formula: \[ \cos(2\tan^{-1}(1/2)) = 2\cos^2(\theta) - 1 \] Substituting \( \cos(\theta) \): \[ \cos(2\tan^{-1}(1/2)) = 2\left(\frac{2}{\sqrt{5}}\right)^2 - 1 \] Calculating \( \left(\frac{2}{\sqrt{5}}\right)^2 \): \[ \left(\frac{2}{\sqrt{5}}\right)^2 = \frac{4}{5} \] Thus, \[ \cos(2\tan^{-1}(1/2)) = 2 \cdot \frac{4}{5} - 1 = \frac{8}{5} - 1 = \frac{8}{5} - \frac{5}{5} = \frac{3}{5} \] ### Final Answer Therefore, the value of \( \cos(2\tan^{-1}(1/2)) \) is: \[ \boxed{\frac{3}{5}} \]

To solve the problem \( \cos(2\tan^{-1}(1/2)) \), we can use the properties of inverse trigonometric functions. Here’s the step-by-step solution: ### Step 1: Use the Double Angle Identity We know that: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] For \( \theta = \tan^{-1}(1/2) \), we can express \( \cos(2\tan^{-1}(1/2)) \) using the identity above. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)[2cos(2sin^(-1)(1)/(2))]

sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1/2)+tan^(-1)2) =

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

Evaluate : tan^(-1) (2 cos ( 2 sin^(-1) (1/2)))

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If: cos(2.tan^(-1)x)=1/2 , then: x=

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

cos[2(tan^(-1).(1)/(5)+tan^(-1)5)] = ________.

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))