Home
Class 12
MATHS
sin[2sin^(-1)(4/5)]...

`sin[2sin^(-1)(4/5)]`

A

`12/25`

B

`16/25`

C

`24/25`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin[2\sin^{-1}(4/5)] \), we will use the formula for the sine of double the inverse sine function. ### Step-by-step Solution: 1. **Identify the formula**: We know that \[ \sin[2\sin^{-1}(x)] = 2x\sqrt{1 - x^2} \] In our case, \( x = \frac{4}{5} \). 2. **Substitute \( x \) into the formula**: \[ \sin[2\sin^{-1}(4/5)] = 2 \cdot \frac{4}{5} \cdot \sqrt{1 - \left(\frac{4}{5}\right)^2} \] 3. **Calculate \( 1 - x^2 \)**: \[ 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25} \] 4. **Take the square root**: \[ \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] 5. **Substitute back into the sine formula**: \[ \sin[2\sin^{-1}(4/5)] = 2 \cdot \frac{4}{5} \cdot \frac{3}{5} \] 6. **Calculate the final expression**: \[ = \frac{24}{25} \] Thus, the value of \( \sin[2\sin^{-1}(4/5)] \) is \( \frac{24}{25} \). ### Final Answer: \[ \frac{24}{25} \]

To solve the problem \( \sin[2\sin^{-1}(4/5)] \), we will use the formula for the sine of double the inverse sine function. ### Step-by-step Solution: 1. **Identify the formula**: We know that \[ \sin[2\sin^{-1}(x)] = 2x\sqrt{1 - x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

sin(cos^(-1)(4/5))

What is sin [sin^(-1)((3)/(5))+sin^(-1)((4)/(5))] equal to ?

tan(sin^(-1) (4/5))

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

sin^(-1)(sin3)+sin^(-1)(sin4)+sin^(-1)(sin5) is equal to

sin(2tan^(-1) .(4)/(5))= ?

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=