Home
Class 12
MATHS
If tan^(-1)x=pi/4-tan^(-1)(1/3) then x i...

If `tan^(-1)x=pi/4-tan^(-1)(1/3)` then `x` is

A

`1/2`

B

`1/4`

C

`1/6`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`pi/4-tan^(-1)1/3=tan^(-1)1=tan^(-1){(1-1/3)/(1+1/3)}=tan^(-1)1/2 rArr x=1/2`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).