Home
Class 12
MATHS
If tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 then...

If `tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2` then `x=?`

A

1

B

`-1`

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2} \), we can use properties of inverse trigonometric functions. ### Step 1: Use the property of inverse tangent We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{2} \quad \text{if} \quad ab = 1 \] In our case, let \( a = 1 + x \) and \( b = 1 - x \). Therefore, we need to check if: \[ (1+x)(1-x) = 1 \] ### Step 2: Expand the product Now, expand the left-hand side: \[ (1+x)(1-x) = 1 - x^2 \] ### Step 3: Set the equation Now, we set the equation: \[ 1 - x^2 = 1 \] ### Step 4: Solve for \( x \) Subtract 1 from both sides: \[ -x^2 = 0 \] This implies: \[ x^2 = 0 \] Taking the square root of both sides gives: \[ x = 0 \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{0} \]

To solve the equation \( \tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2} \), we can use properties of inverse trigonometric functions. ### Step 1: Use the property of inverse tangent We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{2} \quad \text{if} \quad ab = 1 \] In our case, let \( a = 1 + x \) and \( b = 1 - x \). Therefore, we need to check if: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)