Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(2pi)/3, then cos...

If `sin^(-1)x+sin^(-1)y=(2pi)/3`, then `cos^(-1)x+cos^(-1)y` is equal to

A

`pi/6`

B

`pi/3`

C

`pi`

D

`(2pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
B

`sin^(-1)x+sin^(-1)y=(2pi)/3 rArr (pi/2-cos^(-1)x)+(pi/2-cos^(-1)y)=(2pi)/3`.
`therefore cos^(-1)x+cos^(-1)y=(pi-(2pi)/3)=pi/3`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is