Home
Class 12
MATHS
Solve tan^(-1)2x+tan^(-1)3x=pi/4....

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.

A

`1/2` or `-2`

B

`1/3` or `-3`

C

`1/4` or `-2`

D

`1/6` or `-1`

Text Solution

Verified by Experts

The correct Answer is:
D

`tan^(-1)3x+tan^(-1)3=tan^(-1)2x=pi/4 rArr tan^(-1)((3x+2x)/(1-6x^(2))=pi/4`.
`therefore (5x)/(1-6x^(2))=tanpi/4 =1 rArr 6x^(2)+5x-1=0`
`rArr (x+1)(6x-1)=0`.
`rArr x=-1` or `x=1/6`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=