Home
Class 12
MATHS
Prove the following results: tan(cos^(...

Prove the following results: `tan(cos^(-1)4/5+tan^(-1)2/3)=(17)/6`

A

`13/6`

B

`17/6`

C

`19/6`

D

`23/6`

Text Solution

Verified by Experts

The correct Answer is:
B

`cos^(-1)x=tan^(-1)sqrt(1-16/25)/(4/5)=tan^(-1)3/4`.
`therefore cos^(-1)4/5+tan^(-1)2/3=tan^(-1)3/4+tan^(-1)2/3=tan^(-1)(3/4+2/3)/(1-3/4 xx 2/3)=tan^(-1)(3/4+2/3)/(1-3/4 xx 2/3) = tan^(-1)17/6`
`therefore` given exp. `=tan{tan^(-1)17/6}=17/6`
`therefore` given exp. `=tan{tan^(-1)17/6}=17/6`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 2\ tan^(-1)3/4-tan^(-1)(17)/(31)=tan^(-1)pi/4

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

tan(cos^(-1)((3)/(5))+tan^(-1)((1)/(4)))

Prove the following: tan^(-1)1/7+2\ tan^(-1)1/3=pi/4

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

cos^(-1)(15/17)+2 tan^(-1)(1/5)=

Prove the following 2 tan^(-1). 1/2 +tan^(-1) . 1/7 = tan^(-1). 31/17

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)