Home
Class 12
MATHS
cot^(-1)9+cosec^(-1)(sqrt(41))/(4)=...

`cot^(-1)9+cosec^(-1)(sqrt(41))/(4)=`

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`(3pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
B

`"cosec"^(-1)x=cot^(-1)sqrt(x^(2)-1) rArr "cosec"^(-1)sqrt(41)/4=cot^(-1)sqrt(41/16-1)=cot^(-1)5/4`
`therefore cot^(-1)9+cot^(-1)5/4=tan^(-1)1/9+tan^(-1)4/5=tan^(-1)(1/9+4/5)/(1-1/9 xx 4/5) = tan^(-1)1=pi/4`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)3+cosec^(-1)sqrt(5)=

4(cot^(-1)3+csc^(-1)sqrt(5))=pi

Find the value of : tan(cosec^(-1)(sqrt(41))/4),

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4 )

Evaluate the following : tan ( cosec^(-1) sqrt(41)/4)

" (3.) "cot^(-1)3+cosec^(-1)sqrt(5)=..........