Home
Class 12
MATHS
Integrate from the first principles int0...

Integrate from the first principles `int_0^(pi/2) sinx dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals . int_(0)^(pi//2) x^(2) sinx dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

By using the properties of definite integrals, evaluate the integral: int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate the following integral: int_0^(pi//2)x^2sinx\ dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Find the value of the integral is int_(0)^(pi) x log sinx dx

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is