Home
Class 11
MATHS
Number of values of x in the interval (0...

Number of values of `x` in the interval `(0, 5)` satisfying the equation : `(ln(sqrt(sqrt(x^2+1)+x))+ln(sqrt(sqrt(x^2+1)-x)))/lnx = x,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

log(sqrt(x)+1/sqrt(x))

intdx/(sqrt(1+x^2)sqrt(log(x+sqrt(1+x^2))))

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

Sum of all the values of x satisfying the equation log_(17) log_(11) (sqrt(x + 11) + sqrt(x)) = 0" " (1) is

(log(x+sqrt(x^(2)+1)))/(x) is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Number of value(s) of 'x' which satisfy the equation log_(3+x^(2))(15+sqrt(x))=log_(5+x^(2))((1)/(2+sqrt(x))) is/are-

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is