Home
Class 12
MATHS
If f(x) = Ax^2 + Bx satisfies the condit...

If `f(x) = Ax^2 + Bx` satisfies the conditions `f'(1)=8` and `int_0^1 f(x) dx =8/3`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=Ax^(2) +Bx satisfies the conditions f^(1)(1)=8 and int_(0)^(1) f(x)dx=8/3 , then

The numbers A, B and C such that a function of the form f(x) = Ax^(2) + Bx + C satisfies the conditions f'(1)= 8, f(2) + f''(2) = 33 and int_(0)^(1) f(x) dx=7//3 , are

If f(x) = x^(3) + bx^(2) + ax satisfies the conditions of Rolle's theorem in [1, 3] with c = 2 + (1)/sqrt(3) then (a, b) is equal to

If f(x) satisfies the conditions of Rolle's Theorem on [1,2] , then int_1^2 f'(x) dx equals:

If f(x) = x^(3) + bx^(2) +ax satisfies the conditions of Rolle's theorem on [1,3] with c = 2+(1)/(sqrt(3)) then (a,b) =0

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then