Home
Class 12
MATHS
If for k in N\ (sin2k x)/(sinx)=2[cosx+c...

If for `k in N\ (sin2k x)/(sinx)=2[cosx+cos3x+...+cos(2k-1)x]` Then the value of `I=int_0^(pi//2) sin2kx*cotx\ dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x] , then value of I=int_(0)^(pi//2)(sin 2 k x)/(sin x)cos x dx is :

(sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x] , then value of I=int_(0)^(pi//2)(sin 2 k x)/(sin x)cos x dx is :

Prove that for any positive integer K, (sin2kx)/(sinx)=2[cos x + cos 3x+....+ cos (2k-1)x] Hence , proved that int_(0)^(pi//2) sin 2kx. Cot x dx = (pi//2)

Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x++cos(2k-1)x]dot Hence, prove that int_0^(pi/2)sin2x kcotxdx=pi/2dot

Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x++cos(2k-1)x]dot Hence, prove that int_0^(pi/2)sin2x kcotxdx=pi/2dot

Prove that for any positive integer k , (sin2k x)/(sinx)=2[cosx+cos3x++cos(2k-1)x]dot Hence, prove that int_0^(pi/2)sin2x kcotxdx=pi/2dot

Prove that for any positive integer k,(sin2kx)/(sin x)=2[cos x+cos3x+...+cos(2k-1)x] Hence,prove that int_(0)^((pi)/(2))sin2xk cot xdx=(pi)/(2)

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is